

ORIGINAL ARTICLE

Ruth Holm · Gunnar Tanum

Evaluation of the prognostic significance of nm23/NDP kinase and cathepsin D in anal carcinomas

An immunohistochemical study

Received: 15 January 1996 / Accepted: 19 February 1996

Abstract Reduced expression of nm23/NDP kinase and increased expression of cathepsin D seem to be correlated with a high metastatic potential for a variety of malignancies. Nm23/NDP kinase and cathepsin D have been correlated with several clinical variables, including survival in 96 patients with squamous cell carcinoma of the anal canal. Immunohistochemical methods were used on paraffin-embedded biopsies. Seventy-six (79%) anal carcinomas were nm23/NDP kinase positive, whereas 35 (36%) and 28 (29%) of the cases were cathepsin D positive in tumour cells and stromal cells, respectively. We have found no indication that the extent of cathepsin D staining has any prognostic significance. The overall survival of patients with tumours positive for nm23/NDP kinase in the cytoplasm was significantly shorter than that of patients with anal carcinomas negative for nm23/NDP kinase.

Key words Nm23/NDP kinase · Cathepsin D · Immunohistochemistry · Anal carcinoma

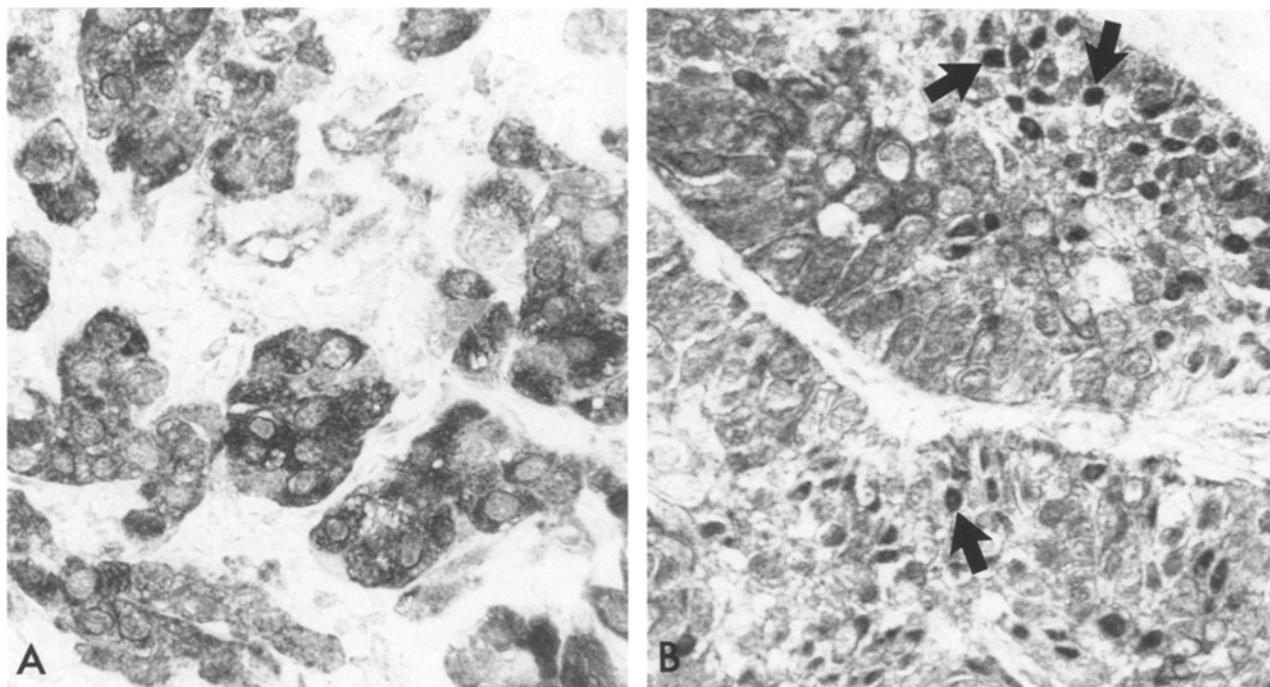
Introduction

Cancer invasion and metastasis are the result of a cascade of sequential steps involving multiple host–tumour interactions [21]. The mechanisms involved in cancer cell metastasis are not well understood, but the two gene products nm23 and cathepsin D have been reported to be associated with tumour metastasis [10, 13, 30, 34, 35].

R. Holm (✉)
Department of Pathology,
The Norwegian Radium Hospital,
and Institute for Cancer Research,
Montebello, N-0310 Oslo, Norway
Tel.: (47) 22 93 42 07; Fax: (47) 22 73 01 64

G. Tanum
Department of Medical Oncology,
The Norwegian Radium Hospital
and Institute for Cancer Research, N-0310 Oslo, Norway

The nm23 gene, encoding nucleoside diphosphate (NDP) kinase, has been suggested to represent a new class of metastasis-associated genes [31]. In human tumours a strong association has been observed between reduced expression of nm23 gene and acquisition of vigorous metastatic behaviour in melanomas [10], breast carcinomas [4, 34], hepatocellular carcinomas [23], gastric carcinomas [20] and colorectal carcinomas [2, 36]. Other studies have failed to reveal any such association [9, 12, 14, 15, 28, 29, 37, 38].


Cathepsin D is an acidic lysosomal protease and may affect the invasive and metastatic potential of tumours by its ability to degrade the extracellular matrix [5, 27]. Abnormal high levels of cathepsin D are found in cancer cells and this overexpression is associated with an unfavourable prognosis in breast carcinomas in several [19, 26, 30, 35], but not all [1, 17], studies performed.

The role of nm23 and cathepsin D in the metastatic process of anal carcinomas has not yet been evaluated. In the present study, we examined the immunohistochemical expression of nm23/NDP kinase and cathepsin D in a comparatively large series of patients with squamous cell carcinoma of the anal canal and compared it with clinical and histopathological data.

Materials and methods

Patients

A total of 113 patients were admitted to the Norwegian Radium Hospital for squamous cell carcinoma of the anal canal during 1983–1991. “Basaloid” and “cloacogenic” tumours were included, as these represent variants of squamous cell carcinomas. All patients were examined clinically including digital ano-rectal examination, proctoscopy, CT or MR scans of the pelvic, ultrasonography of the liver, chest radiographs and blood tests. All patients received a standard treatment (combined radiochemotherapy) according to a protocol. All tumours were checked by histopathological examination. Sufficient material for immunohistochemical analyses of nm23/NDP kinase and cathepsin D was available for 96 tumours. Of these 96 patients, 73 (76%) were women and 23 (24%) were men. The mean age of the patients was 66.0 years (range 37–91). The tumours were staged according to the

Fig. 1A, B Immunohistochemical staining for nm23/NDP kinase. Tumour with **A** strong cytoplasmic staining and **B** cytoplasmic and nuclear staining (arrows). $\times 400$

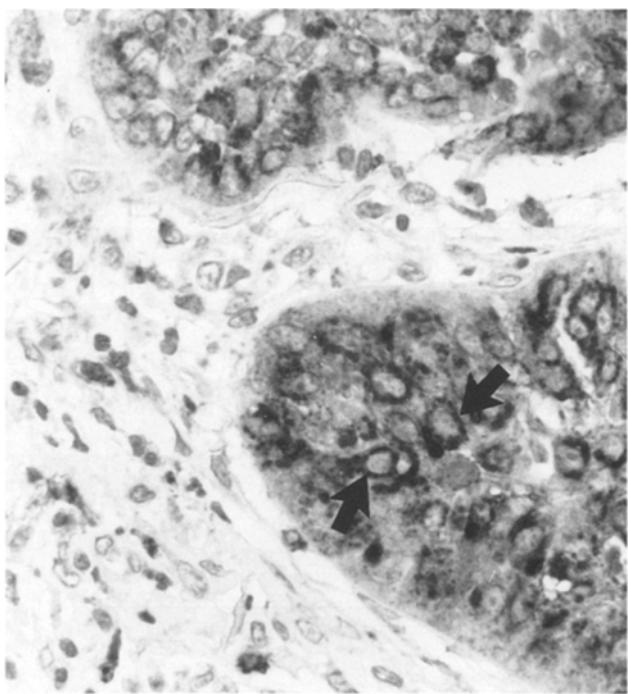
TNM/system (UICC). There were 75 patients with primary tumours, 9 with T1, 22 with T2, 23 with T3 and 21 patients with T4 tumours. Twenty-one patients had a local recurrence following previous surgery. A total of 9 patients were lost during follow-up. The remaining 87 patients were followed up at regular intervals for 5 years after treatment.

Immunohistochemistry

Sections for immunohistochemistry were stained with the avidin-biotin-peroxidase complex (ABC) method [16]. Deparaffinized sections were treated with 0.3% hydrogen peroxide (H_2O_2) in methanol for 30 min to block endogenous peroxidase. To unmask the epitopes of cathepsin D, we microwaved the sections twice for 5 min in 10 mM citrate buffer pH 6.0 [6] in a household microwave oven (NF-4084, Electrolux) at the maximum power (800 W). The sections were then incubated for 20 min with normal serum from the species in which the secondary antibody was made. This was done to eliminate nonspecific staining. Excess normal serum was blotted from the slides before incubation with polyclonal nm23-H1/NDP kinase A antibody (Boehringer Mannheim, Mannheim, Germany) diluted 1:50 (1 μ g IgG/ml) and polyclonal cathepsin D antiserum (Zymed Laboratories, San Francisco, Calif.) diluted 1:50 for 18–22 h at 4°C. The sections were then incubated with 1:200 dilution of biotin-labelled secondary antibody for 30 minutes and ABC (10 μ g/ml of avidin and 2.4 μ g/ml of biotin-labelled peroxidase) for 60 min (Vector, Burlingame, Calif.). Tissues were stained for 5 minutes with 0.05% 3'3'-diaminobenzidine tetrahydrochloride (DAB) freshly prepared in 0.05 M tris(hydroxymethyl)aminomethane (Tris) buffer at pH 7.6, containing 0.01% H_2O_2 and then counterstained with haematoxylin, dehydrated, and mounted in Diatex. All the dilutions of normal sera, antibodies, biotin-labelled secondary antibodies and ABC were made with phosphate-buffered saline, pH 7.4, containing 5% bovine serum albumin. All series included positive controls. Negative controls included substitution of primary polyclonal antiserum/antibody with normal rabbit serum/antibody. All controls gave satisfactory results.

The immunostaining results for nm23/NDP kinase and cathepsin D were scored semi-quantitative according to the intensity of staining and proportion of cells stained. To score positive, more than 10% of the tumour cells had to show moderate to strong staining.

Statistical analysis


Statistical analyses were performed with the BMDP-PC programme package (Pearson Chi-square test) using a level of significance of 0.05.

Results

The 96 anal carcinomas included 76 (79%) that were nm23/NDP kinase positive. All positive tumours exhibited cytoplasmic staining (Fig. 1A). In addition 23 of the positive cases showed nuclear staining (Fig. 1B). Seventeen specimens of normal anal squamous epithelium adjacent to a tumour were negative for nm23/NDP kinase.

The cathepsin D content was evaluated as positive in 48 (50%) of the 96 anal carcinomas. Thirty-five (36%) of these cases exhibited cytoplasmic staining in tumour cells (Fig. 2), whereas in 28 (29%) of these cases stromal cells were immunoreactive. In 15 of the positive cases both tumour and stromal cells expressed cathepsin D. The expression of cathepsin D in carcinoma cells and stromal cells was statistically significantly associated ($P=0.03$). Weak cytoplasmic cathepsin D staining was observed in 17 specimens of normal anal squamous epithelium adjacent to a tumour and was evaluated as negative.

An inverse relationship was seen between nm23/NDP kinase and cathepsin D expression ($P=0.03$). Thirty-three (34%) of the tumours were positive for both nm23/NDP

Fig. 2 Immunohistochemical staining for cathepsin D. Case with strong cytoplasmic staining in tumour cells (arrows). $\times 400$

Table 1 Histopathological/clinical diagnosis compared with nm23/NDP kinase and cathepsin D expression

	Total no. of cases	nm23/NDP kinase positive (%)	Cathepsin D positive (%) ^a
<i>Tumour stage</i>			
T ₁	9	9 (100)	2 (22)
T ₂	22	19 (86)	4 (18)
T ₃	23	14 (61)	11 (48)
T ₄	21	19 (90)	10 (48)
R	21	15 (71)	8 (38)
<i>Nodal involvement</i>			
Negative	71	57 (80)	25 (35)
Positive	25	19 (76)	10 (40)
<i>Differentiation</i>			
High/moderate	51	40 (78)	17 (33)
Poor	45	36 (80)	18 (40)

^a Cases with cathepsin D expression in tumour cells

kinase and cathepsin D or negative for both, whereas 63 (66%) of the tumours were positive for nm23/NDP kinase and negative for cathepsin D or negative for nm23/NDP kinase and positive for cathepsin D.

The extent of nm23/NDP kinase and cathepsin D staining showed no significant correlation with tumour stage, lymph node metastases or grade of differentiation (Table 1). Patients with tumours with cytoplasmic staining for nm23/NDP kinase had a poorer survival than those with a negative tumour ($P=0.03$). However, no significant relationship was found between nuclear nm23/NDP kinase staining and overall survival

($P > 0.10$). There was no correlation between tumour and/or stromal staining for cathepsin D and overall patient survival ($P > 0.10$).

Discussion

In malignant melanoma, breast carcinoma, hepatocellular carcinoma, gastric carcinoma, colorectal carcinoma and cervical adenocarcinoma, decreased nm23/NDP kinase expression was shown to correlate with a vigorous metastatic potential [18, 20, 31, 34], the presence of distant metastases [2, 36], early appearance of metastases [10] and poor prognosis [20, 22, 34]. These reports are in accordance with the hypothesis that nm23 functions as a tumour metastasis-suppressor gene. To our knowledge, no corresponding studies on anal carcinomas have been published. Our results are in contrast to these findings; we found poorer survival in patients with nm23/NDP kinase-positive anal carcinomas. Similar results have been reported in neuroblastoma [12], lung carcinoma [9] and thyroid carcinoma [38], with an increased expression of nm23/NDP kinase associated with an advanced stage of disease. Furthermore, others did not find any significant correlation between the extent of nm23/NDP kinase staining and lymph node metastases, distant metastases or survival rate in pulmonary adenocarcinoma [14], colorectal carcinoma [37] and medullary thyroid carcinoma [15]. These contradictory results seem to indicate that the correlation of nm23/NDP kinase expression with the metastatic process is dependent on the tissue type. The varying results may also be due to the identification of nm23/NDP kinase protein in some earlier studies [1, 14, 15, 28, 34, 36, 37] and in this work, whereas others have relied on nm23 mRNA detection [4, 9, 10, 18, 20, 37, 38]. Furthermore, the nm23/NDP kinase antibodies used may recognize different epitopes. The polyclonal nm23/NDP kinase used in the present study was raised against nm23-H1/NDP kinase A. However, it is known that nm23-H1/NDP kinase A has 88% identity to nm23-H2/NDP kinase B [11], and cross-reaction with nm23-H2/NDP kinase B cannot be excluded. In other studies, a monoclonal nm23 antibody identifying only nm23-H1/NDP kinase A has been used [34, 36].

Previously, immunohistochemical analyses of nm23/NDP kinase have focused solely on cytoplasmic staining. In the study of Bertheau et al. [3], malignant thyroid tumours expressing nm23/NDP kinase in the nuclei were associated with longer disease-free survival. In contrast to this finding we did not observe any significant relationship between nuclear nm23/NDP kinase staining and prognosis. However, we have demonstrated for the first time that increased cytoplasmic staining for nm23/NDP kinase in anal carcinomas is correlated with a poorer survival.

Recently, it has been demonstrated that a differentiation-inhibiting factor in a mouse myeloid leukaemia cell line is the murine homologue of nm23-H2 [24]. Furthermore, in lung carcinomas increased expression of both

nm23-H1 and nm23-H2 mRNA was correlated with poorly differentiated tumours [9]. Thus, nm23/NDP kinase may act as an inhibitor of differentiation in mouse myeloid leukaemia cells and lung tumours. In a previous report, nm23/NDP kinase has been shown to act as a transcriptional factor for *c-myc* expression [25]. Increased *c-myc* expression has commonly been noted in anal carcinomas [8], and cell lines overexpressing *c-myc* have a markedly higher resistance to differentiation than do parental lines lacking the overexpression of *c-myc* [7]. Therefore, it may be possible that elevated expression of nm23/NDP kinase up-regulates *c-myc* and inhibits the cellular differentiation. However, this concept was not supported in our series of anal carcinomas; we did not observe any relationship between nm23/NDP kinase expression and degree of cellular differentiation.

Cathepsin D expression has been identified as a poor prognostic factor in breast carcinomas [17, 30, 32]. With the cytosolic assay used in these reports, the cellular origin of the enzyme cannot be assessed. In this and in other studies, immunohistochemical methods have been used that demonstrate cathepsin D expression in both cancer cells and stromal cells [1, 19, 33]. In the present study there was no significant correlation between the extent of cathepsin D staining in tumour and/or stromal cells and tumour stage, lymph node metastases, grade of differentiation or overall survival in patients with anal carcinomas. This is in agreement with the immunohistochemical results obtained in breast carcinomas [1]. In contrast with these findings, the elevated extent of cathepsin D staining in tumour cells [19] and stromal cells [33] has been shown to be associated with a poor prognosis in patients with breast carcinomas.

The specimens used in the present study have been collected from 14 different pathology laboratories, and the fixation procedures may vary. Such variation has been claimed to influence immunohistochemical results. However, this is unlikely since recent work in our institution (unpublished findings) has identified similar immunostaining for nm23/NDP kinase and cathepsin D in tissue fixed in 10% acid formalin and in 10% buffered formalin.

In summary, we have found that the extent of cathepsin D staining has no clinical significance in anal carcinomas, while increased cytoplasmic staining for nm23/NDP kinase is correlated with poorer survival for patients with squamous cell carcinoma of the anal canal.

Acknowledgements We thank Ellen Hellesylt and Mette Myre for technical assistance, and Wencke Danielsen for typing the manuscript. The following departments of pathology are acknowledged for kindly supplying histological materials: Laboratory of Pathology in Oslo, the Region and University Hospital in Trondheim and Tromsø, and the County Hospitals in Akershus, Drammen, Fredrikstad, Kristiansand, Lillehammer, Molde, Nordland, Skien, Tønsberg and Ålesund. This work was supported by grants from the Norwegian Cancer Society.

References

1. Armas A, Gerald WL, Lesser M, Arroyo CD, Norton L, Rosen PP (1994) Immunohistochemical detection of cathepsin D in *T₂ N₀ M₀* breast carcinoma. *Am J Surg Pathol* 18:158–166
2. Ayhan A, Yasui W, Yokozaki H, Kitadai Y, Tahara E (1993) Reduced expression of nm23 protein is associated with advanced tumour stage and distant metastases in human colorectal carcinomas. *Virchows Arch [B]* 63:213–218
3. Bertheau P, De La Rosa A, Steeg PS, Merino MJ (1994) Nm23 protein in neoplastic and nonneoplastic thyroid tissues. *Am J Pathol* 145:26–32
4. Bevilacqua G, Sobel ME, Liotta LA, Steeg PS (1989) Association of low nm23 RNA levels in human primary infiltrating ductal breast carcinomas with lymph node involvement and other histopathological indicators of high metastatic potential. *Cancer Res* 49:5185–5190
5. Briozzo P, Morisset M, Capony F, Rougeot C, Rochefort H (1988) In vitro degradation of extracellular matrix with M_r 52,000 cathepsin D secreted by breast cancer cells. *Cancer Res* 48:3688–3692
6. Cattoretti G, Becker HG, Key G, Duchrow M, Galle J, Gerdes J (1992) Monoclonal antibodies against recombinant parts of Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. *J Pathol (Lond)* 168:357–363
7. Crook T, Greenfield I, Howard J, Stanley M (1990) Altered in growth properties of human papilloma virus type 16 immortalised human cervical keratinocyte cell line correlate with amplification and overexpression of *c-myc* oncogene. *Oncogene* 5:619–622
8. Crook T, Wrede D, Tidy J, Scholefield J, Crawford L, Vousden KH (1991) Status of *c-myc*, *p53* and retinoblastoma genes in human papilloma virus positive and negative squamous cell carcinomas of the anus. *Oncogene* 6:1251–1257
9. Engel M, Theisinger B, Seib T, Seitz G, Huwer H, Zang KD, Welter C (1993) High levels of nm23-H1 and nm23-H2 messenger RNA in human squamous-cell lung carcinoma are associated with poor differentiation and advanced tumour stages. *Int J Cancer* 55:375–379
10. Flørenes VA, Aamdal S, Myklebost O, Maelandsmo GM, Bruland ØS, Fodstad Ø (1992) Levels of nm23 messenger RNA in metastatic malignant melanomas: inverse correlation to disease progression. *Cancer Res* 52:6088–6091
11. Gilles AM, Presecan E, Vonica A, Lascu I (1991) Nucleoside diphosphate kinase from human erythrocytes. *J Biol Chem* 266:8784–8789
12. Hailat N, Keim DR, Melhem RF, Zhu X, Eckerskorn C, Brodeur GM, Reynolds CP, Seeger RC, Lottspeich F, Strahler JR, Hanash SM (1991) High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with *N-myc* gene amplification. *J Clin Invest* 88:341–345
13. Hennessy C, Henry JS, May FEB, Westley BR, Angus B, Lennard TWJ (1991) Expression of the antimetastatic gene nm23 in human breast cancer: an association with good prognosis. *J Natl Cancer Inst* 83:281–285
14. Higashiyama M, Doi O, Yokouchi H, Kodama K, Nakamori S, Tateishi R, Kimura N (1992) Immunohistochemical analysis of nm23 gene product/NDP kinase expression in pulmonary adenocarcinoma: lack of prognostic value. *Br J Cancer* 66: 533–536
15. Holm R, Høie J, Kaalhus O, Nesland JM (1995) Immunohistochemical detection of nm23/NDP kinase and cathepsin in medullary carcinomas of the thyroid gland. *Virchows Arch* 427:289–294
16. Hsu SM, Raine L, Fanger H (1981) Comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. *Am J Clin Pathol* 75:734–738
17. Hurlimann J, Gebhard S, Gomez F (1993) Estrogen receptor, progesterone receptor, pS2, ERD5, HSP 27 and cathepsin D in invasive ductal breast carcinomas. *Histopathology* 23:239–248

18. Iizuka N, Oka M, Noma T, Nakazawa A, Hirose K, Suzuki T (1995) nm23-H1 and nm23-H2 messenger RNA abundance in human hepatocellular carcinoma. *Cancer Res* 55:652–657
19. Isola J, Weitz S, Visakorpi T, Holli K, Shea R, Khabbaz N, Kallioniemi OP (1993) Cathepsin D expression detected by immunohistochemistry has independent prognostic value in axillary node-negative breast cancer. *J Clin Oncol* 11:36–43
20. Kodera Y, Isobe K, Yamauchi M, Kondoh K, Kimura N, Akiyama S, Itoh K, Nakashima I, Takagi H (1994) Expression of nm23 H-1 RNA levels in human gastric cancer tissue. *Cancer* 73:259–65
21. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. *Cell* 64:327–336
22. Mandai M, Konishi I, Koshiyama M, Komatsu T, Yamamoto S, Nanbu K, Mori T, Fukumoto M (1995) Altered expression of nm23-H1 and c-erbB-2 proteins have prognostic significance in adenocarcinoma but not in squamous cell carcinoma of the uterine cervix. *Cancer* 75:2523–2529
23. Nakayama T, Ohtsuru A, Nakao K, Shima M, Nakata K, Watanabe K, Ishii N, Kimura N, Nagataki S (1992) Expression in human hepatocellular carcinoma of nucleoside diphosphate kinase, a homologue of the nm23 gene product. *J Natl Cancer Inst* 84:349–354
24. Okabe-Kado J, Kasukabe T, Honma T, Hayashi M, Henzel W, Hozumi M (1992) Identity of a differentiation inhibiting factor for mouse myeloid leukemia cells with nm23/nucleoside diphosphate kinase. *Biochem Biophys Res Commun* 182:987–994
25. Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumour metastasis. *Science* 261:478–480
26. Pujol P, Maudelonde T, Daures JP, Rouanet P, Brouillet JP, Pujol H, Rochefort H (1993) A prospective study of the prognostic value of cathepsin D levels in breast cancer cytosol. *Cancer* 71:2006–2012
27. Rochefort H (1990) Cathepsin D in breast cancer. *Breast Cancer Res Treat* 16:3–13
28. Sastre-Garau X, Lacome ML, Jouve M, Veron M, Madelenat H (1992) Nucleoside diphosphate kinase/nm23 expression in breast cancer: lack of correlation with lymph-node metastasis. *Int J Cancer* 50:533–538
29. Sawan A, Lascu I, Veron M, Anderson JJ, Wright C, Horne HW, Angus B (1994) NDP-K/nm23 expression in human breast cancer in relation to relapse, survival, and other prognostic factors: an immunohistochemical study. *J Pathol (Lond)* 172:27–34
30. Seshadri R, Horsfall D, Firgaira F, McCaul K, Setlur V, Chalmers AH, Yeo R, Ingram D, Dawkins H, Hahnel R, South Australian Breast Cancer Study Group (1994) The relative prognostic significance of total cathepsin D and HER-2/neu oncogene amplification in breast cancer. *Int J Cancer* 56:61–65
31. Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME (1988) Evidence for a novel gene associated with low tumour metastatic potential. *J Natl Cancer Inst* 80:200–204
32. Tandon AK, Clark GM, Chamness GM, Chirgwin JM, McGuire WL (1990) Cathepsin D and prognosis in breast cancer. *N Engl J Med* 322:297–302
33. Tetu B, Brisson J, Cotel C, Brisson S, Potvin D, Roberge N (1993) Prognostic significance of cathepsin-D expression in node-positive breast carcinoma: an immunohistochemical study. *Int J Cancer* 55:429–435
34. Tokunaga Y, Takeshi U, Furukawa K, Kondo H, Kanematsu T, Shiku H (1993) Reduced expression of nm23-H1, but not of nm23-H2, is concordant with the frequency of lymph-node metastasis of human breast cancer. *Int J Cancer* 71:66–71
35. Winstanley JHR, Leinster SJ, Booke TG, Westley BR, Platt-Higgins AM, Rudland PS (1993) Prognostic significance of cathepsin-D in patients with breast cancer. *Br J Cancer* 67:767–772
36. Yamaguchi A, Urano T, Fushida S, Furukawa K, Nishimura G, Yonemura Y, Miyazaki I, Nakagawara G, Shiku H (1993) Inverse association of nm23-H-1 expression by colorectal cancer with liver metastasis. *Cancer* 68:1020–1024
37. Zeng ZS, Hsu S, Zhang ZF, Cohen AM, Enker WE, Turnbull AA, Guillem JG (1994) High level of nm23-H1 gene expression is associated with local colorectal cancer progression not with metastases. *Br J Cancer* 70:1025–1030
38. Zou M, Shi Y, Al-Sedairy S, Farid NR (1993) High levels of Nm23 gene expression in advanced stage of thyroid carcinomas. *Br J Cancer* 68:385–388